A genomic selection strategy to identify accessible and dimerization blocking targets in the 5'-UTR of HIV-1 RNA.
نویسندگان
چکیده
Defining target sites for antisense oligonucleotides in highly structured RNA is a non-trivial exercise that has received much attention. Here we describe a novel and simple method to generate a library composed of all 20mer oligoribonucleotides that are sense- and antisense to any given sequence or genome and apply the method to the highly structured HIV-1 leader RNA. Oligoribonucleotides that interact strongly with folded HIV-1 RNA and potentially inhibit its dimerization were identified through iterative rounds of affinity selection by native gel electrophoresis. We identified five distinct regions in the HIV-1 RNA that were particularly prone to antisense annealing and a structural comparison between these sites suggested that the 3'-end of the antisense RNA preferentially interacts with single-stranded loops in the target RNA, whereas the 5'-end binds within double-stranded regions. The selected RNA species and corresponding DNA oligonucleotides were assayed for HIV-1 RNA binding, ability to block reverse transcription and/or potential to interfere with dimerization. All the selected oligonucleotides bound rapidly and strongly to the HIV-1 leader RNA in vitro and one oligonucleotide was capable of disrupting RNA dimers efficiently. The library selection methodology we describe here is rapid, inexpensive and generally applicable to any other RNA or RNP complex. The length of the oligonucleotide in the library is similar to antisense molecules generally applied in vivo and therefore likely to define targets relevant for HIV-1 therapy.
منابع مشابه
HIV-2 RNA dimerization is regulated by intramolecular interactions in vitro.
Genomic RNA dimerization is an essential process in the retroviral replication cycle. In vitro, HIV-2 RNA dimerization is mediated at least in part by direct intermolecular interaction at stem-loop 1 (SL1) within the 5'-untranslated leader region (UTR). RNA dimerization is thought to be regulated via alternate presentation and sequestration of dimerization signals by intramolecular base-pairing...
متن کاملInhibition of HIV-1 replication and dimerization interference by dual inhibitory RNAs.
The 5'-untranslated region (5'UTR) of the HIV-1 RNA is an attractive target for engineered ribozymes due to its high sequence and structural conservation. This region encodes several conserved structural RNA domains essential in key processes of the viral replication and infection cycles. This paper reports the inhibitory effects of catalytic antisense RNAs composed of two inhibitory RNA domain...
متن کاملStructural Dynamics of Retroviral Genome and the Packaging
Retroviruses can cause diseases such as AIDS, leukemia, and tumors, but are also used as vectors for human gene therapy. All retroviruses, except foamy viruses, package two copies of unspliced genomic RNA into their progeny viruses. Understanding the molecular mechanisms of retroviral genome packaging will aid the design of new anti-retroviral drugs targeting the packaging process and improve t...
متن کاملInhibition of 5′-UTR RNA Conformational Switching in HIV-1 Using Antisense PNAs
BACKGROUND The genome of retroviruses, including HIV-1, is packaged as two homologous (+) strand RNA molecules, noncovalently associated close to their 5'-end in a region called dimer linkage structure (DLS). Retroviral HIV-1 genomic RNAs dimerize through complex interactions between dimerization initiation sites (DIS) within the (5'-UTR). Dimer formation is prevented by so calledLong Distance ...
متن کاملHIV RNA dimerisation interference by antisense oligonucleotides targeted to the 5' UTR structural elements.
The HIV-1 genome consists of two identical RNA molecules non-covalently linked by their 5' unstranslatable regions (5' UTR). The high level of sequence and structural conservation of this region correlates with its important functional involvement in the viral cycle, making it an attractive target for antiviral treatments based on antisense technology. Ten unmodified DNA antisense oligonucleoti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 7 شماره
صفحات -
تاریخ انتشار 2004